

ViType: A Cost Efficient On-body Typing System through Vibration

Wenqiang Chen, Maoning Guan, Yandao Huang, Lu Wang, Rukhsana Ruby, Wen Hu*, Kaishun Wu

> Shenzhen University *University of New South Wales

SECON' 18, Hong Kong

2018/6/26

Background

The screen size is getting smaller, and so is the input interface, which makes the interactive experience poorer

Existing Input Methods

01 Simple Typing

Small Size User Unfriendly

02 Finger Tracking

Too Slow

03 Speech Input

Disturbing Poor Noise Resistance Sensitive Information

Existing Input Methods

Vibration¹

Acoustic ²

 Yingying Chen, et.al. VibSense: Sensing Touches on Ubiquitous Surfaces through Vibration, IEEE Secon, 2017.
Xinyu Zhang, et.al. Ubiquitous Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-Grained Keystroke Localization, ACM Mobisys, 2014.

Related Work

Chris Harrison, et.al. Skinput: Appropriating the Body as an Input Surface, ACM CHI, 2010.

How to overcome the limitations of a small screen for smart watch?

Virtual Keyboard——ViType

On-body typing system with a speed dial (T9 layout)

Observation

Attenuation Model

$$A(d) = A_0 e^{-\alpha \times d}$$

 A_0 : the initial amplitude d : the propagation distance α : the attenuation coefficient

Tapping on different locations - unique vibration profile

Design Goals and Challenges

1. A Cost efficient systems with **low sampling rate** (600Hz)

- 2. Sensing with only one piezoelectric sensor
- 3. Fine-grained and robust under different practical conditions
- 4. Using without retraining after the initial bootstrap

Architecture of ViType

Architecture of ViType

Denoising

Segmentation

1.A Raspberry Pi with an ADC

2. Piezoelectric ceramic sensor

Diameter: 20 mm Thickness: 0.4 mm

Denoising

Segmentation

Human mobility

Sensing

Denoising

Segmentation

20 Hz Butterworth high pass filter

 To Remove the noise caused by DC & human mobility(less than 10Hz)

Human mobility

Architecture of ViType

Architecture of ViType

Feature Extraction

Amplitude

(Time Domain)

+

Power Spectral Density (PSD) (Frequency Domain)

Classification Algorithm

Back propagation Neural Network

Architecture of ViType

Architecture of ViType

Runtime Calibration and Adaptation

Tap Displacement

How to deal with the deviation?

Runtime Calibration and Adaptation

Tap Displacement

Update with candidate keys

Evaluation

Experimental Setup

- 9 virtual keys on T9 layout
- Each participant typed 30 times for each key
- 30 participants collected 8,100 keystrokes

Evaluation

Accuracy—Effect of feature

The average classification accuracy is 94.8%.

Accuracy——Comparison with Skinput

ViType outperforms Skinput 1.5X.

Accuracy—Impact of Training Set Size

Training set size enlarge from 5 to 20, the accuracy rise from 80.9% to 94.8%.

Evaluation

Evaluation

Robustness—Location setting

Experiments were conducted with 8 subjects. We choose opisthenar finally due to user preference.

Robustness—Location setting

Experiments were conducted with 8 subjects. We choose opisthenar finally due to user preference.

Robustness—Tap Strength

Hard - Gentle - All

 Different tap force leads to lower classification accuracy.

 The accuracy recovers to "all-all" situation.

Robustness—Displacement

X-axis format: "training data" – " test data"

The system's performance suffers a degradation under displacement impact

Runtime Adaptation

Center - Over - Below - Left - Right - All

Robustness——Calibration & Adaptation

The calibration and adaptation scheme mitigate the displacement impact, and it can recover the accuracy to above 95% after a few tens of inputs

Robustness—Mobility

The average accuracy is **92.8%**, which is showing the robustness to human mobility

The noise caused by human mobility is at low frequency (less than 10Hz) We remove it via a 20Hz Butterworth high pass filter

Robustness—Layout Extension

3*3 Layout: 95.7 %

4*4 Layout: 92.6%

5*5 Layout: 89.2%

Evaluation

Evaluation

Accuracy Robustness User Study

User Study

ViType, as a typing system with larger interaction interface, does provide higher input accuracy, faster input speed, and better user experience.

Cost

- Initial training: 3 minutes
- Training duration: 0.6 seconds
- Latency : 0.2 seconds
- Sensor: 0.15 dollars.

Demonstration of ViType

Unique vibration from different

Conclusion

- ViType firstly turns hand back into virtual keyboard with only one vibration sensor.
- Our systems achieve up to 1.5X improvement in classification accuracy sampling at 600Hz.
- We evaluate the accuracy and robustness under different common conditions and design the calibration scheme to improve the zoelectric ceramic robustness.
- ViType outperforms the input method in COTS smart watch.

Virtual keypad

Thank you!

Robustness—Temporal stability

The classification accuracy has no significant change over a month

$$PSD = 10\log_{10} \frac{abs(FFT(k_i))^2}{f_s \times n}$$

 f_s : sampling rate

k_i: received signal

n: the number of samples of k_i

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

x: raw data